
Assignment 5:

Continuations, Parallelism, Cost, and Modality

15-312: Principles of Programming Languages (Spring 2020)

Out: Wednesday, Nov 11, 2020
Due: Wednesday, Nov 25, 2020 11:59am ET

1 Introduction

This assignment will familiarize you with the concepts continuations and parallel evaluation. We
study both concepts as extensions of MPCF (modal PCF), which we discussed in lecture before
spring break. MPCF uses a modal separation to distinguish values and computations in a call-by-
value dynamics, which is a convenient mechanism for controlling the evaluation order.

The first extension, called KPCF+, has been discussed in recitation and introduces the explicit
manipulation of continuations. It is very similar to PCF with continuations as discussed in lecture
but uses a modal separated K machine. You will implement the statics and dynamics of KPCF+.
Then you will program KPCF+ terms using letcc and throw and use your own implementation
to verify correctness of your solution.

The second extension, called MPPCF, adds constructs for parallelism. We use a new formulation
of parallelism that improves and generalizes upon the presentation in the textbook. The modal
separation is used to distinguish values, which are data for which we have already incurred the cost
of evaluation, and expressions, which are data for which we must still pay the cost of evaluation.
You will implement the typechecker and a local dynamics for MPPCF, which forks tasks that
evaluate sub-computations in parallel. With all of these complete, you will have implemented a
parallel programming language.

Make sure to start early and to understand the statics and dynamics of the new languages. There
will be plenty of code to write, so don’t delay!

1.1 Submission

As usual, please submit the written part of this homework as a PDF file to Gradescope. To submit
the implementation part, submit a zipfile to Gradescope. To create the zipfile, use the Makefile
supplied in the handout. It will ensure that all the relevant files are handed in.

1

2 MPCF with Continuations

In lecture, we introduced a K machine to add exceptions and continuations to PCF. Here, we
introduce a K machine for MPCF. There is no conceptual difference between continuations in
MPCF and PCF. We opt for MPCF in this assignment since it acts as an on-ramp for MPPCF
and since the presentation is more succinct.

2.1 Modal PCF with K Machines

Like we did for PCF in lecture, we first introduce a K machine for MPCF. We then add continuations
in a second step. The syntax of MPCF is defined as follows.

τ ::= nat nat naturals
| ⇀(τ1; τ2) τ1 ⇀ τ2 partial functions
| comp(τ) τ comp computations

v ::= x x variables
| z z zero
| s(v) s(v) successor
| fun{τ1; τ2}(f . x . e) fun f(x:τ1):τ2 is e recursive function
| comp(e) {e} suspended computation

e ::= ret(v) ret(v) trivial computation
| ap(v1; v2) v1(v2) application
| ifz{e0;x . e1}(v) ifz{τ}(v; e0;x . e1) zero test
| bind(v;x . e) let x← v in e sequential evaluation

k ::= ε empty stack
| k;x.e stack with frame

s ::= k . e Evaluating e in for k
| k / v Throw v to k

Evaluating an MPCF term using K Machines starts in the initial state ε . e. The evaluation
terminates when it reaches a final state specified by the dynamics after taking a number of transition
steps. Several judgments are involved in describing the dynamics using K machines:

Γ ` v : τ Value v has type τ

Γ ` e ∼.. τ Expression e may evaluate to a value of τ

k ÷ τ Stack accepts a value of type τ

s 7−→ s Evaluation state taking a step

s ok Evaluation state is well formed

s final Evaluation state is final

Rules for these judgments are defined in Appendix B. Note that in the statics, ret(v) is the only

2

way to elevate a value into a computation. In the dynamics, ret(v) is the only expression that
cause the state to change it’s evaluation mode into throw mode.

2.2 KPCF+

In this section, we define KPCF+, a language for explicitly manipulate continuations. KPCF+

extends MPCF with the following syntax:

τ ::= . . . all MPCF types
| ×(τ1; τ2) τ1 × τ2 binary products
| +(τ1; τ2) τ1 + τ2 binary sums
| unit unit unit type
| void void void type
| cont(τ) τ cont continuation type
| α, β . . . type variables

v ::= . . . all MPCF values
| pair(v1; v2) 〈v1, v2〉 values of binary products
| in[l]{τ1; τ2}(v) l · v left injetion of sum type
| in[r]{τ1; τ2}(v) r · v right injetion of sum type
| 〈〉 〈〉 unit value

e ::= . . . all MPCF expressions
| split[τ](v;x, y . e) split v as x, y in e split a product
| case{x . e1; y . e2}(v) case v {l · x ↪→ e1 | r · y ↪→ e2} casing on a sum
| abort{τ}(v) case v { } nullary case analysis
| letcc{τ}(x . e) letcc τ inx.e capture current continuation
| throw{τ}(v2; v1) throw v1 to v2 throw at a continuation

There is no change to the syntax of stacks k and states s. The rules for new constructs are defined
in Appendix C. In the code, we also make available regular lambda abstractions.

The types for KPCF+ contain type variables. They allow you to write down expressions in the next
subsection that do not depend on the choice of any concrete type. To account for type variables,
an KPCF+ term is type-checked under a context ∆ of type variables. The typing judgments for
KPCF+ are ∆; Γ ` v : τ and ∆; Γ ` e ∼·· τ . A type is considered well-formed if and only if all
type variables it contains appear in ∆. For the sake of simplicity, in this assignment we will fix our
typing context ∆ to be

∆0 , α, β, γ, δ .

In the code, the four type variables are A,B,C, and D.

Task 2.1 (10 pts). Unlike in System T, the elimination form for products is split instead of left
and right projection. Suppose we would like to replace split with left and right project v.L and
v.R. Provide the statics and dynamics for those two new forms. Your rules must respect modal
separation. Argue why this may not be a good idea.

3

In the next two tasks you will implement KPCF+. Implementing KPCF+ is different in a number
of ways compared with implementing other languages you have encountered. In the typechecker,
you may want to treat values and expressions separately due to modal separation. You not only
need to be able to synthesize a type for expressions provided by the user, you will also need to
verify the validity of any evaluation state (See Appendix B, Stacks and Safety). For the dynamics,
your implementation will need to explicitly manage the continuation of a KPCF+ program. You
will also notice how modal separation dramatically simplifies your dynamics implementation.

Task 2.2 (20 pts). Implement the typechecker for KPCF+ in the structure TypeChecker in
kpcf/language/typechecker.sml.

Task 2.3 (20 pts). Implement the structure Dynamics in the file kpcf/language/dynamics.sml.

2.3 A Continuation of Logic

One interesting aspect of continuations is that the continuation type correspond to negation in
propositional logic. In a total language, types correspond to propositions in logic, and values
of a type corresponds to a proof of the corresponding proposition. This is often referred to as
Curry–Howard correspondence. Specifically, if we write A ⊃ B for A implies B, we have

A ∨B corresponds to α+ β
A ∧B corresponds to α× β
A ⊃ B corresponds to α⇀ β
T corresponds to unit

F corresponds to void

In other words, values of these regular types can be thought of as proofs of tautologies (i.e.,
propositions that are true under every valuation). For example, the value

fun{α;α}(f . x . x) : α→ α

is a proof of the tautology A ⊃ A.

However, this correspondence does not hold in KPCF+ since divergence results in an inconsistent
proof system. For example, the value

fun{α;β}(f . x . f(x)) : α→ β

would prove the proposition A ⊃ B, which is not a tautology. Therefore, we consider a subset of
KPCF+ in which all functions terminate in this subsection. For the tasks in this subsection,
you may not use recursive functions.

If viewed as proofs, continuations correspond to refutations and continuation types cont(τ) cor-
respond to negation of propositions. For brevity we omit uses of bnd and comp in the behavior
specifications.

Task 2.4 (10 pts). Now consider the proposition (A ⊃ B) ⊃ (B ∨ ¬A). The law of excluded
middle(LEM) (A∨¬A)is directly derivable from this proposition if we substitute A for B. In fact,
(A ⊃ B) ⊃ (B ∨ ¬A) is equivalent to A ∨ ¬A.a

4

In kpcf/derivable.kpcf, exhibit an expression e of type:

· ` e ∼·· (α⇀ β)⇀ (β + cont(α))

Behavior specification: Let k . e(f) steps to k / v. If v = r · k′ for some continuation k′. Then
k′ / v′ evaluates to k / l · v′′ where v′′ is the value produced by f(v′).

In the lecture, we have observed it’s possible to “prove” the law of excluded middle (LEM) by
exhibiting a term of type τ + cont(τ):

letcc{τ + cont(τ)}(r . bind(comp(letcc{τ1}(r′ . throw (r · r′) to r));x . l · x))

Task 2.5 (10 pts). Another proposition that is equivalent to LEM is known as the Pierce’s law.
Although it’s equivalent to LEM, it does not involve negation in the formula. In kpcf/pierce.kpcf,
exhibit an expression e of the following type that corresponds to Pierce’s law.

· ` e ∼·· ((α⇀ β)⇀α)⇀α

Behavior specification: When applied to a non-diverging function f of type (α⇀ β)⇀α, it returns
a value of type α.
Hint: Consider how f may behave: it either returns a value of α, or it activates its argument with
a value of α. Either way f knows a proof of A.

2.4 Algebraic Effects

In this section, you will implement store using continuations and exceptions in SML. Conceptually,
a (integer reference) cell in a store is just a pair of functions get : unit -> int and set : int

-> unit -> int such that get returns the value in the cell when queried and set updates the cell
so that subsequent invocations of get returns the given integer (as well as additionally returning the
given integer). A cell is created via new : int -> (unit -> int) * (int -> unit -> int),
returning the requisite services, where get is initialized with the given integer.

Concretely, the functionality of a cell is realized through a procedure analogous to a system call.
For each service the cell provides, the kernel (us) declare an exception that is parameterized by
the client data (just the client continuation for get, and an integer and the continuation for set).
When invoked, the service seizes the client continuation and raises an exception coupled with the
client data (context switch to the kernel), to be dealt with by a global exception handler. This
handler represents the store, and is implemented as a single global (SML) reference.

Initially, the store is a reference to the empty handler:

val emp : exn -> int = fn _ => raise Undefined

val store = ref emp

Cells are added to the store by composing the associated handlers:

fun comp (h1, h2) : exn -> int =

fn x => (h1 x) handle Match => (h2 x)

5

For the next two tasks, implement your solution in algeff/algebraic.sml.

Task 2.6 (10 pts). Implement a cell that only supports get, where the client data is an integer
continuation.

(* new : int -> (unit -> int) *)

fun new n =

let

exception Get of int cont

(* your implementation *)

end

Notice that the exception Get is declared locally, since we want to have multiple, distinct cells in
the store.

Your cell should implement the following behavior:

fun run c = c () handle x => (!store)(x)

val get = new 0

val get’ = new 1

fun seq (c1, c2) () = (c1 () ; c2 ())

val c = seq (get, get’)

(* 1 *)

val result = run c

Task 2.7 (10 pts). Extend your previous cell with the set service, where the client data is int *

int cont.

(* new : int -> (unit -> int) * (int -> unit -> int) *)

fun new n =

let

exception Get of int cont

exception Set of int * int cont

(*your implementation here*)

end

Your implementation should have the following behavior:

val (get, set) = new 0

val (get’, set’) = new 0

val c = seq (set 1, seq (set’ 11, get))

6

(* 1 *)

val result = run c

7

3 Parallel PCF

The textbook presentation of System PCF gives us the means of executing computations in parallel.
We’d like to generalize the binary fork-join model we’ve seen so far, as well as to examine the cost
of parallel programs more closely. So far in PCF, the notion of a value was an expression that
cannot be evaluated further. This is still the case in the parallel formulation, but we should now
be more careful on the issue of cost.

Suppose the user provides as input a long list of number literals. Any reasonable representation of
lists will represent this as a value, i.e. not provide a means of evaluating it further. However, the
value judgment is defined inductively, meaning an interpreter must still examine the entire list and
every element within it in order to conclude that it is a value. This process incurs linear cost. Now
imagine that this list is used as an argument to a function, and substituted in several locations
throughout the function body. Now the interpreter will repeatedly evaluate this object, and the
cost becomes nontrivial. The notion of value, as specified by the dynamics, has diverged from a
more desirable definition of value under parallelism: a data element for which we need incur no
additional cost.

The solution is to utilize a modally separate semantics, as we will see in Modernized Algol. In
Algol, we separate commands from expressions in that commands have effects while expressions
are pure. Here, we make the claim that expressions are not values, but through the incurring of
cost may eventually compute a value. That’s a powerful concept, which lets us precisely state that
costs should be attributed to expressions when they perform computation to result in values.

This language with the modal separation is the by-value interpretation of PCF, extended with types

8

that enable parallel computation. The syntax of the new language MPPCF is:

τ ::= nat nat naturals
| ⇀(τ1; τ2) τ1 ⇀ τ2 partial functions
| eprod[n](τ1; . . . ; τn) τ1 ⊗ . . .⊗ τn eager products
| lprod[n](τ1; . . . ; τn) {τ1 & . . . & τn} lazy products
| seq(τ) τ seq sequences
| gen(τ) τ gen generators

v ::= x x variables
| num[n] n numeric literals
| fun{τ1; τ2}(f . x . e) fun f(x:τ1):τ2 is e recursive function1

| etup[n](v1; . . . ; vn) v1 ⊗ . . .⊗ vn ∗ eager tuples
| ltup[n](e1; . . . ; en) {e1 & . . . & en} lazy tuples
| seq{τ}[n](v1, . . . , vn) 〈v1, . . . , vn〉∗ sequences
| gen{τ}(v; i . e) gen{τ}[v] with i in e generators

e ::= ret(v) ret(v) return value
| ap(v1; v2) v1(v2) application
| s(v) s(v) successor
| ifz{e0;x . e1}(v) ifz{τ}(v; e0;x . e1) zero test
| split[n](v;x1, . . . , xn . e) split v as x1, . . . , xn in e tuple unpack
| len(v) |v| sequence length
| sub(v1; v2) v1[v2] sequence subscript
| parbnd(v;x . e) parbnd x← v in e parallel evaluation
| seqbnd(v;x . e) seqbnd x← v in e parallel sequence tabulation

This language has PCF’s natural and function types, along with two new product types, one
eager and one lazy. The distinction between the two shall be made clear shortly. We have also
distinguished the value and expression sorts; they are now syntactically separate and there is no
question as to where a value is expected. Values may be lifted into expressions using the return
construct. Expressions are modally separate. Zero or more expressions may be suspended as values
using lazy products.

Suspended computations are eliminated through the bind constructs. In MPPCF, there are two
such constructs, having similar concrete syntax and capable of eliminating different kinds of expres-
sions. The parallel evaluation construct, parbnd, eliminates a lazy tuple in favor of an eager one,
computing each element in parallel. The parallel sequence tabulation construct, seqbnd, eliminates
a sequence generator in favor of an eager sequence, also in parallel.

Natural numbers are eliminated via a zero test, eager tuples are eliminated via a pattern-matching
split operator, and sequences may be examined for their length and elements retrieved by in-
dex.

Lazy products should be considered as a generalization of computation type in modal PCF to n-ary.
parbnd on the other hand, may be considered as generalized sequential bind to n-ary. It might

1In the code, we also make available regular lambda functions, not described here for brevity.

9

worth noting that although those generalizations are motivated from a type-theoretic point of view,
they nicely reflect parallelism from a computing perspective.

Another important fact about eager tuples and sequences is that they are internal forms that
cannot be constructed directly. They can still be manipulated, but they will only show up as
variables. Their introduction forms are the elimination forms of lazy tuples and generators.

3.1 Statics

The static semantics of many of the constructs in this language should be familiar from your
previous experience with PCF. However, we now define the statics separately for values and for
expressions, much as we do for expressions and commands in Algol.

3.1.1 Values

Γ, x : τ ` x : τ Γ ` num[n] : nat

Γ, f : τ1 ⇀ τ2, x : τ1 ` e ∼·· τ2
Γ ` fun{τ1; τ2}(f . x . e) : τ1 ⇀ τ2

Γ ` v1 : τ1 . . . Γ ` vn : τn
Γ ` etup[n](v1 ⊗ . . .⊗ vn) : τ1 ⊗ . . .⊗ τn

Γ ` e1 ∼·· τ1 . . . Γ ` en ∼·· τn
Γ ` ltup[n](e1 & . . . & en) : {τ1 & . . . & τn}

Γ ` v1 : τ . . . Γ ` vn : τ

Γ ` seq{τ}[n](v1, . . . , vn) : τ seq

Γ ` v : nat Γ, i : nat ` e ∼·· τ
Γ ` gen{τ}(v; i . e) : τ gen

The value typing judgment is woven into the expression typing judgment. Here, the most interesting
thing is that lazy tuples have lazy product type and eager tuples have eager product type. Likewise,
sequences have sequence type and generators have generator type.

3.1.2 Expressions

Γ ` v : τ
Γ ` ret(v) ∼·· τ

Γ ` v1 : τ1 ⇀ τ2 Γ ` v2 : τ1
Γ ` ap(v1; v2) ∼·· τ2

Γ ` v : nat
Γ ` s(v) ∼·· nat

Γ ` v : nat Γ ` e1 ∼·· τ Γ, x : nat ` e2 ∼·· τ
Γ ` ifz{e1;x . e2}(v) ∼·· τ

Γ ` v : τ1 ⊗ . . .⊗ τn Γ, x1 : τ1, . . . , xn : τn ` e ∼·· τ
Γ ` split[n](v;x1, . . . , xn . e) ∼·· τ

Γ ` v : τ seq

Γ ` len(v) ∼·· nat
Γ ` v1 : τ seq Γ ` v2 : nat

Γ ` sub(v1; v2) ∼·· τ

Γ ` v : {τ1 & . . . & τn} Γ, x : τ1 ⊗ . . .⊗ τn ` e ∼·· τ
Γ ` parbnd(v;x . e) ∼·· τ

Γ ` v : τ1 gen Γ, x : τ1 seq ` e ∼·· τ
Γ ` seqbnd(v;x . e) ∼·· τ

Returns, applications, zero test, and sequence length and subscript all behave as expected. The
tuple split construct pattern matches an eager tuple against as many variables as there are elements
in the tuple. Finally, the parallel evaluation construct is simultaneously an elimination for the lazy
tuple and an introduction for the eager tuple. Likewise for the parallel sequence evaluation, which
eliminates generators and introduces sequences.

10

Why do we call the lazy tuple lazy? Values of lazy product type hold n expressions (computations)
suspended, able to be forced later. When we are ready to evaluate each element of the tuple in
parallel, we may force its evaluation using the parbnd construct. Each independent element is
evaluated, and an eager tuple is made available containing the results of the computations.

Note that this means the singleton lazy product, lprod[1](τ), acts the same way as the type of
suspensions of type τ , and the singleton lazy tuple is exactly a lazy suspension. To force the
computation, we must evaluate the lazy tuple, then project out its first component. Of course,
since singleton tuples are so common, we provide this special case within the syntax directly.

We can express computations using tuples with sequences as well, presenting the difference between
static parallelism and dynamic parallelism. Though dynamic parallelism with sequences is more
flexible, it is slightly deficient in its safety guarantees and can potentially be more difficult to
schedule at runtime.

3.2 Evaluation Dynamics

Though we will not implement MPPCF using evaluation dynamics, it is a very useful tool for
understanding how the language evaluates, and which components are evaluated in parallel.

The evaluation dynamics are defined in terms of the judgment e ⇓c v, where the cost c is the
abstract cost of the operation. We use ⊕ to denote sequential composition and ⊗ to denote
parallel composition.

ret(v) ⇓1 v
[fun{τ1; τ2}(f . x . e), v2/f, x]e ⇓c v
ap(fun{τ1; τ2}(f . x . e); v2) ⇓c⊕1 v s(num[n]) ⇓1 num[n+ 1]

e1 ⇓c v
ifz{e1;x . e2}(num[0]) ⇓c⊕1 v

n 6= 0 [num[n− 1]/x]e2 ⇓c v
ifz{e1;x . e2}(num[n]) ⇓c⊕1 v

[v1, . . . , vn/x1, . . . , xn]e ⇓c v
split[n](v1 ⊗ . . .⊗ vn;x1, . . . , xn . e) ⇓c⊕1 v len(〈v1, . . . , vn〉) ⇓1 num[n]

i < n

〈v0, . . . , vn−1〉 [num[i]] ⇓1 vi

e1 ⇓c1 v1 . . . en ⇓cn vn [v1 ⊗ . . .⊗ vn/x]e ⇓c v
parbnd({e1 & . . . & en};x . e) ⇓(c1⊗ ...⊗ cn)⊕ c⊕1 v

[num[0]/i]e ⇓c1 v1 . . . [num[n− 1]/i]e ⇓cn vn [〈v1, . . . , vn〉 /x]e′ ⇓c v n > 0

seqbnd(gen{τ}[num[n]] with i in e;x . e′) ⇓(c1⊗ ...⊗ cn)⊕ c⊕1 v

Evaluation semantics precisely describe “what” the expressions should do, but not “how” to do so
in parallel. For that, we use a more involved structural dynamics. As you saw, it is possible to
relate the evaluation semantics to the structural semantics by proving their equivalence regarding
cost assignments, but here we will take their conceptual equivalence for granted.

3.2.1 Local Transitions

The structural dynamics of MPPCF involve two types of transitions: local transitions, which
represent the work that one processor may perform in one step on an expression, and global

11

transitions, which represent the work of multiple processors. The mechanism we use to study these
semantics is the P machine.

In the P machine, we introduce a new expression-like notation for join-points in the computa-
tion.

join[. . .](x.e)

denotes a blocked computation that depends on the result of specific computations. This is a
general mechanism to carry out a subcomputation.

The introduction for a join is the parallel evaluation construct:
νa{a ↪→ parbnd({e1 & . . . & en};x . e)}

7−→
loc

νa a1 . . . an{a ↪→ join[a1 ⊗ . . .⊗ an](x.e)⊗ a1 ↪→ e1 ⊗ . . .⊗ an ↪→ en}

In MPPCF, there is no explicit form for sequential composition. This is because a hypothetical
sequential composition construct can be considered a special case of parallel evaluation with only
one operand:

νa{a ↪→ bind({e};x . e′)}
7−→
loc

νa a1{a ↪→ join[a1](x.e
′)⊗ a1 ↪→ e}

And generators evaluate their bodies a specified number of times, substituting the index each
time:

νa{a ↪→ seqbnd(gen{τ}[num[n]] with i in e;x . e′)}
7−→
loc

νa a1 . . . an{a ↪→ join[〈a1, . . . , an〉](x.e′)⊗ a1 ↪→ [num[0]/i]e⊗ . . .⊗ an ↪→ [num[n− 1]/i]e}

The elimination for a join is when all of its operands have evaluated:

νa a1 . . . an{a ↪→ join[a1 ⊗ . . .⊗ an](x.e)⊗ a1 ↪→ ret(v1)⊗ . . .⊗ an ↪→ ret(vn)}
7−→
loc

νa{a ↪→ [v1 ⊗ . . .⊗ vn/x]e}

νa a1{a ↪→ join[a1](x.e)⊗ a1 ↪→ ret(v)}
7−→
loc

νa{a ↪→ [v/x]e}

νa a1 . . . an{a ↪→ join[〈a1, . . . , an〉](x.e)⊗ a1 ↪→ ret(v1)⊗ . . .⊗ an ↪→ ret(vn)}
7−→
loc

νa{a ↪→ [〈v1, . . . , vn〉 /x]e}

12

There is no local dynamics rule for ret; it represents an expression that has been evaluated to its
fullest point. rets are eliminated by the join points, and a total program should eventually evaluate
to ret(v) for some value v. Note that this definition is slightly different from the evaluation
semantics, which take expressions to values, but is the same in spirit.

Each other rule merely steps some expression that can evaluate:

νa{a ↪→ ap(fun{τ1; τ2}(f . x . e); v)} 7−→
loc

νa{a ↪→ [fun{τ1; τ2}(f . x . e), v/f, x]e}

νa{a ↪→ s(num[n])} 7−→
loc

νa{a ↪→ ret(num[n+ 1])}

νa{a ↪→ ifz{e0;x . e1}(num[0])} 7−→
loc

νa{a ↪→ e0}

νa{a ↪→ ifz{e0;x . e1}(num[n+ 1])} 7−→
loc

νa{a ↪→ [num[n]/x]e1}

νa{a ↪→ split[n](v1 ⊗ . . .⊗ vn;x1, . . . , xn . e)} 7−→
loc

νa{a ↪→ [v1, . . . , vn/x1, . . . , xn]e}

νa{a ↪→ len(〈v1, . . . , vn〉)} 7−→
loc

νa{a ↪→ ret(num[n])}

i < n
νa{a ↪→ 〈v0, . . . , vn−1〉 [num[i]]} 7−→

loc
νa{a ↪→ ret(vi)}

3.2.2 Errors

There is one kind of error that can occur, when an illegal subscript is taken:

i ≥ n
νa{a ↪→ 〈v0, . . . , vn−1〉 [num[i]]} err

Errors are propagated at join-points, and if multiple errors should result, the leftmost error should
be propagated.

νΣ1{µ1} 7−→
loc

νΣ1{µ′1} νa1{a1 ↪→ e1} err

νΣ1 a1 Σ2{µ1 ⊗ a1 ↪→ e1 ⊗ µ2} err

13

3.2.3 Global Transitions

Each global transition represents the simultaneous execution of one local step of computation on
each of up to p ≥ 1 processors:

νΣ1 a1{a1 ↪→ e1 ⊗ µ1} 7−→
loc

νΣ′1 a1{a1 ↪→ e′1 ⊗ µ′1}
. . .

νΣn an{an ↪→ en ⊗ µn} 7−→
loc

νΣ′n an{an ↪→ e′n ⊗ µ′n}
νΣ1 a1 . . . Σn an Σ{a1 ↪→ e1 ⊗ µ1 ⊗ . . .⊗ an ↪→ en ⊗ µn ⊗ µ}

7−−→
glo

νΣ′1 a1 . . . Σ′n an Σ{a1 ↪→ e′1 ⊗ µ′1 ⊗ . . .⊗ an ↪→ e′n ⊗ µ′n ⊗ µ}

The rule picks the first n ≤ p tasks (a non-empty collection of computations in the work list) for
which a local step can be taken and executes them in parallel (that is, in one global step). This
represents one particular scheduling. If you allow rearrangements of the tasks, then other schedules
can be represented this way as well. This rule, therefore, introduces non-determinism into the
MPPCF dynamics.

4 Implementation

4.1 Typechecker

Task 4.1 (25 pts). Implement the typechecker for values and expressions for this language in the
structure TypeChecker in language/typechecker.sml.

14

4.2 Local Dynamics

Your task in this section is to implement a dynamics for taking local steps. Its signature is:

signature LOCALSTEPPER =

sig

exception Malformed of string

datatype result =

Fork of Mppcf.Exp.t list * (Mppcf.Value.t list -> Mppcf.Exp.t)

| Continue of Mppcf.Exp.t

| Final of Mppcf.Value.t

| Error of exn

(* Return when a subscript is out of range *)

exception Subscript

(* Return when a generator is of length zero *)

exception Length

val step : Mppcf.Exp.t -> result

end

The job of the step function is to implement the relevant portion of the dynamics and turn an
expression into its corresponding result. In the result datatype we have four possibilities:

1. Fork (es, join) represents a fork in computation. es is a list of expressions which need to
be turned into values in order to compute the function join. This will occur whenever there
are multiple unevaluated subexpressions.

2. Continue e indicates that we were able to make forward progress in computation, without
needing to wait for additional computations.

3. Final v occurs when we reach a value, indicating that we are either at the top level of
computation and finished, or this term is ready for feeding to a join function. This decision
will be made by the scheduler.

4. Error e occurs when an error is encountered. In practice e will be either Subscript or
Length for the two error cases.

Notice that step does not need to be recursive (none of the local stepping rules have premises
containing local steps!)

Also note that you should not raise exceptions in your local stepper (except Malformed). You
should instead return Error e so that the exception can be propagated correctly by the join.

Task 4.2 (25 pts). Implement the structure LocalStepper in the file language/localstepper.sml
according to the specification given above.

15

4.3 Derived Forms

Writing code in MPPCF may be inconvenient due to the modal separation. The separation between
values and expressions makes even writing arithmetic computations somewhat elaborate. We’d
really like some language extensions that make our lives easier. This set of derived forms encapsulate
commonly repeated elements. They are:

e += e1 + e2 addition
| e1 − e2 subtraction
| e1 × e2 multiplication
| e1 / e2 division
| e1 <= e2 comparison

All of these are considered expressions, not values. These constructs are completely representable in
vanilla MPPCF, but it would be painful to write many programs without having them. Therefore,
the parser accepts these constructs, and produces an ABT for the “derived” language. We then
translate this language to MPPCF.

We do not provide the entire semantics here, but as a rule of thumb, the constructs work as they
do in ML. Division by zero has undefined behavior, but otherwise division should round exactly
as the div operator does in Standard ML (down). You are encouraged to look back at your PCF
code from Assignment 3, but do note the difference in the division specification! Finally, e1 <= e2
should evaluate to 1 if e1 ≤ e2 or 0 otherwise.

Also, the arithmetic operations are required to evaluate their arguments in parallel. We will also
be doing some parallel programming in the next section.

Task 4.3 (30 pts). Implement the desugaring transformation, which converts the above expressions
to basic MPPCF. These are the functions in the structure DesugarOps in desugar/desugar-ops.sml.
See the signature in desugar/desugar-ops.sig and the use of these functions in desugar/desugar.sml

to see what they do.

Hint: Make sure to read the notes in the code carefully, including helpful helper functions.

Congrats! Once the translation has taken place (or even before, if you refrain from using the derived
form constructs), you will be able to write and run code in MPPCF.

4.4 Parallel Programming

Now that we have a fully functional parallel programming language, we can write some useful
programs in it and have them run in a parallel fashion. You are provided with a parallel runtime
for MPPCF which schedules your programs. Though for practical reasons we may not see much
speedup in an interpreted language like this one, it is inspired by data-parallel languages like NESL
which allow the programmer to easily write parallel programs.

You can see the scheduler which is implemented for you in the execute/ directory. It uses the
interface of processors, which are essentially threads in Concurrent ML that receive tasks and emit
results, and a scheduler interface which manipulates a work list according to a k-DFS scheduling
strategy. The Run interface then exposes the ability to evaluate an expression to a value, which is

16

derived from a terminal ret expression. Take a look at execute/scheduler.sml to see how the
scheduler algorithm is implemented.

4.4.1 Map and Reduce

We will now do some parallel programming in MPPCF, taking advantage of its sequence support
to build up some features of a sequence library.

Consider an n-sequence of natural numbers 〈v1, . . . , vn〉 and a function f : nat⇀nat. The expected
behaviour of map is as follows:

map f 〈v1, . . . , vn〉 = 〈f(v1), . . . , f(vn)〉

Theoretically we may compute all the evaluations of f in parallel, resulting in linear work and
constant span.

Task 4.4 (10 pts). Write this parallel map function in map.mppcf. It should have the type
(nat⇀ nat)⇀ nat seq⇀ nat seq and satisfy the given work and span bounds.

Consider an n-sequence of natural numbers 〈v1, . . . , vn〉 and an associative binary operator on nat

called ∗. Assume n is a power of 2. The expected behaviour of reduce is as follows:

reduce (∗) 〈v1, . . . , vn〉 = v1 ∗ . . . ∗ vn

Since ∗ is associative, we can parenthesize this any way we want. In particular, we can parenthesize
this as a balanced binary tree:

((v1 ∗ v2) ∗ (v3 ∗ v4)) ∗ . . .

Then for each level of this tree, we can compute all the nodes at that level in parallel, for linear
work and logarithmic span.

Task 4.5 (20 pts). Write this parallel reduce function in reduce.mppcf. It should have the type
(nat⇀ nat⇀ nat)⇀ nat seq⇀ nat and satisfy the given work and span bounds.

We have provided a test for the correctness of these functions. Once you have written map.mppcf

and reduce.mppcf, you can run TestHarness.runmaptest () and TestHarness.runreducetest ()

respectively to check the correctness of your functions. However, your function will be graded on
correct usage of parallelism as well, while this only checks correctness.

A Testing your Implementation

KPCF+ A REPL is available through TopLevel.repl (), in which you can directly input KPCF+

expressions and see the type and the value it evaluates to. Remember your input has to be a modal
separated expression, otherwise the parser will reject your input outright. Here is an example
interaction with the interpreter:

- TopLevel.repl();

->ret(z);

17

Statics: term has type Nat

Z

->ret(s(z));

Statics: term has type Nat

(Succ Z)

->ret(fn (x : C) ret(fn (y : D) ret(<x, y>)));

Statics: term has type (Arrow (C, (Arrow (D, (Prod (C, D))))))

(Lam ((x7, C) . (Ret (Lam ((y9, D) . (Ret (Prod (x7, y9))))))))

->(fn (x : nat) ret(s(x)))(s(z));

Statics: term has type Nat

(Succ (Succ Z))

A Testing harness can be accessed through TestHarness.runalltests true. It evaluates files
listed in tests/tests.sml. These test files also serves as a syntax guide.

MPPCF There are many ways of testing your implementation. A REPL is available through
TopLevel.repl (), in which you may type MPPCF expressions and see the values that they
evaluate to. Here is an example interaction with the interpreter:

- TopLevel.repl();

->ret(1)/ret(2);

0

->(fun f(x:nat):nat = ifz x {z=>ret(30) | s(x) => f(x)+ret(1)})(50);

80

->par y = {ret(1) & ret(2)} in split y as x1, x2 in ret(x1);

1

There is also a testing harness which you can access through TestHarness.runalltests. The test
harness is located in tests/tests.sml.

Reference Implementation We have also included the solution to this assignment as a binary
heap image. You can load it into SML/NJ by passing in the @SMLload=refsol flag. Your solutions
should behave just like ours.

18

B Modal PCF with K Machines

Typing of Values and Expressions

Γ, x : τ ` x : τ
Γ ` v : τ

Γ ` ret(v) ∼·· τ

Γ ` z : nat
Γ ` v : nat

Γ ` s(v) : nat

Γ ` v : nat Γ ` e1 ∼·· τ Γ, x : nat ` e2 ∼·· τ
Γ ` ifz{e1;x . e2}(v) ∼·· τ

Γ ` e ∼·· τ
Γ ` comp(e) : τ comp

Γ ` v : τ1 comp Γ, x : τ1 ` e ∼·· τ2
Γ ` bind(v;x . e) ∼·· τ2

Γ, f : τ1 ⇀ τ2, x : τ1 ` e ∼·· τ2
Γ ` fun{τ1; τ2}(f . x . e) : τ1 ⇀ τ2

Γ ` v1 : τ1 ⇀ τ2 Γ ` v2 : τ1
Γ ` ap(v1; v2) ∼·· τ2

Stacks and Safety

ε÷ τ
x : τ ` e ∼·· τ ′ k ÷ τ ′

k;x.e÷ τ

Notice that typing for e does not carry a context Γ with it. This is not a shorthand or a mistake:
since we evaluate only closed terms, x should be the only free variable in e. Be sure to implement
this correctly.

k ÷ τ · ` v : τ
k / v ok

k ÷ τ · ` e ∼·· τ
k . e ok

Dynamics

ε / v final k . ret(v) 7−−→ k / v k;x.e1 / v 7−−→ k . [v/x]e1

k . bind(comp(e);x . e1) 7−−→ k;x.e1 . e

k . ifz{e0;x . e1}(z) 7−−→ k . e0 k . ifz{e0;x . e1}(s(v)) 7−−→ k . [v/x]e1

k . ap(fun{τ1; τ2}(f . x . e); v2) 7−−→ k . [fun{τ1; τ2}(f . x . e)e, v2/f, x]e

19

C The Language KPCF+

Statics

Γ ` v1 : τ1 Γ ` v2 : τ2
Γ ` pair(v1; v2) : τ1 × τ2

Γ ` v : τ1 × τ2 Γ, x : τ1, y : τ2 ` e ∼·· τ
Γ ` split[τ](v;x, y . e) ∼·· τ

Γ ` v : τ1
Γ ` in[l]{τ1; τ2}(v) : τ1 + τ2

Γ ` v : τ2
Γ ` in[r]{τ1; τ2}(v) : τ1 + τ2

Γ ` v : τ1 + τ2 Γ, x : τ1 ` e1 ∼·· τ Γ, y : τ2 ` e2 ∼·· τ
Γ ` case{x . e1; y . e2}(v) ∼·· τ

Γ ` 〈〉 : unit
Γ ` v : void

Γ ` abort{τ}(v) ∼·· τ

k ÷ τ
Γ ` cont(k) : cont(τ)

Γ, x : τ cont ` e ∼·· τ
Γ ` letcc{τ}(x . e) ∼·· τ

Γ ` v1 : τ ′ Γ ` v2 : τ ′ cont

Γ ` throw{τ}(v2; v1) ∼·· τ

Dynamics

k . split[τ](〈v1, v2〉;x, y . e) 7−−→ k . [v1, v2/x, y]e

k . case{x . e1; y . e2}(l · v) 7−−→ k . [v/x]e1 k . case{x . e1; y . e2}(r · v) 7−−→ k . [v/y]e2

k . letcc{τ}(x . e) 7−−→ k . [cont(k)/x]e k . throw{τ}(cont(k′); v) 7−−→ k′ / v

There is no rule for the elimination form of void. Notice how simple defining dynamics are: you
only need to take care for the elimination forms. Introduction forms are naturally taken care of
through modal separation.

20

	Introduction
	Submission

	MPCF with Continuations
	Modal PCF with K Machines
	KPCF+
	A Continuation of Logic
	Algebraic Effects

	Parallel PCF
	Statics
	Values
	Expressions

	Evaluation Dynamics
	Local Transitions
	Errors
	Global Transitions

	Implementation
	Typechecker
	Local Dynamics
	Derived Forms
	Parallel Programming
	Map and Reduce

	Testing your Implementation
	Modal PCF with K Machines
	The Language KPCF+

