Using the Browser’s <canvas> for Data Compression

When building static websites and Single-Page Applications
(SPAs), we sometimes need functionality in JavaScript front
ends—such as compression—that is usually handled on the
back end instead.’ For example, to store SPA state in the
URL hash (the part after the #, also known as the fragment),
we want the serialized data to be as small as possible.? In
such cases, we would benefit from accessing browsers’ com-
pression implementations.®

Web browsers typically include optimized data compression
libraries because they compress and decompress HTTP re-
quests and images, among other data types.** Yet data com-
pression APIs were not widely accessible from websites’
JavaScript front ends until May 2023.¢

// Uint8Array -> compressed base64 string
function compress(data) {
data = Array.from(data);
// Last pixel can have 1-3 data bytes. Store
// that number in the first byte
data.unshift(data.length % 3);
const ¢ = document.createElement("canvas");
const numPixels = Math.ceil(data.length / 3);
c.width = numPixels;
c.height = 1;
const context = c.getContext("2d");
context.fillStyle = "white";
context.fillRect(0, 0, c.width, c.height);
const image = context.getImageData(
0, 0, c.width, c.height,
);
let offset = 0;
for (const b of data) {
// The alpha channel must be fully opaque or
// there will be cross-browser inconsistencies
// when encoding and decoding pixel data
if (offset % 4 == 3) {
image.data[offset++] = 255;
}
image.data[offset++] = b;
}
context.putImageData(image, 0, 0);
const url = c.toDataURL("image/png");
return url.match(/, (.*)/)[1];

Most modern browsers have implemented the Compression
Streams API, thereby supporting compression directly from
JavaScript.” But how do we use compression functionality in
old browsers where it is not exposed? It turns out that it is
not directly exposed, but is indirectly exposed: if we can put
data into a format that is compressed by the browser, and
then get the resulting file, then that file will contain a com-
pressed version of our data. Specifically, we can compress
arbitrary data by leveraging browsers’ ability to losslessly
compress pixel data into a PNG. Even accounting for head-
ers, checksums, and overhead from the PNG format, the re-
sulting file is usually smaller than the uncompressed data.

// compressed base64 string -> original Uint8Array
function decompress(base64) {
// Decompression must be async. There is a race
// if we don't wait for the image to load before
// using its pixels
return new Promise((resolve, reject) => {
const img = document.createElement("img");
img.onerror = () => reject(
new Error("Could not extract image data")
);
img.onload = () => {
try {
const ¢ =
document.createElement("canvas");
c.width = img.naturalWidth;
c.height = img.naturalHeight;
const context = c.getContext("2d");
context.drawImage(img, 0, 0);
const raw = context.getImageData(
0, 0, c.width, c.height,

) .data;
// Filter out the alpha channel
const r = raw.filter((, 1) => i%4 != 3);

resolve(new Uint8Array(
r.slice(l, r.length - 3 + r[0] + 1),
));
} catch (e) { reject(e); }
b
img.src = “data:image/png;base64,${base64}";
1)
}

! Another example is base64-encoding arbitrary byte sequences. JavaScript has btoa and atob for converting strings to and from base64 encod-
ing, but those functions fail for byte sequences that are not valid UTF-16 strings. In other words, they don’t work on all Uint8Arrays and, there-

fore, cannot encode or decode truly arbitrary byte sequences.

? Browsers have varying length limits, but it is ideal to keep URLs under a few thousand characters.

* It’s also possible to port compression libraries to JavaScript or WASM. But browsers have good implementations; we might as well use them!
* https://developer.mozilla.org/en-US/docs/Web/HT TP/Guides/Compression

> https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding

¢ https://caniuse.com/mdn-api_compressionstream

7 https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API

https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Compression
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding
https://caniuse.com/mdn-api_compressionstream
https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API

	Using the Browser's <canvas> for Data Compression

