
Using the Browser’s <canvas> for Data Compression

When building static websites and Single-Page Applications

(SPAs), we sometimes need functionality in JavaScript front

ends—such as compression—that is usually handled on the

back end instead.1 For example, to store SPA state in the

URL hash (the part after the #, also known as the fragment),

we want the serialized data to be as small as possible.2 In

such cases, we would benefit from accessing browsers’ com

pression implementations.3

Web browsers typically include optimized data compression

libraries because they compress and decompress HTTP re

quests and images, among other data types.4,5 Yet data com

pression APIs were not widely accessible from websites’

JavaScript front ends until May 2023.6

Most modern browsers have implemented the Compression

Streams API, thereby supporting compression directly from

JavaScript.7 But how do we use compression functionality in

old browsers where it is not exposed? It turns out that it is

not directly exposed, but is indirectly exposed: if we can put

data into a format that is compressed by the browser, and

then get the resulting file, then that file will contain a com

pressed version of our data. Specifically, we can compress

arbitrary data by leveraging browsers’ ability to losslessly

compress pixel data into a PNG. Even accounting for head

ers, checksums, and overhead from the PNG format, the re

sulting file is usually smaller than the uncompressed data.

// Uint8Array -> compressed base64 string

function compress(data) {

 data = Array.from(data);

 // Last pixel can have 1-3 data bytes. Store

 // that number in the first byte

 data.unshift(data.length % 3);

 const c = document.createElement("canvas");

 const numPixels = Math.ceil(data.length / 3);

 c.width = numPixels;

 c.height = 1;

 const context = c.getContext("2d");

 context.fillStyle = "white";

 context.fillRect(0, 0, c.width, c.height);

 const image = context.getImageData(

 0, 0, c.width, c.height,

);

 let offset = 0;

 for (const b of data) {

 // The alpha channel must be fully opaque or

 // there will be cross-browser inconsistencies

 // when encoding and decoding pixel data

 if (offset % 4 == 3) {

 image.data[offset++] = 255;

 }

 image.data[offset++] = b;

 }

 context.putImageData(image, 0, 0);

 const url = c.toDataURL("image/png");

 return url.match(/,(.*)/)[1];

}

// compressed base64 string -> original Uint8Array

function decompress(base64) {

 // Decompression must be async. There is a race

 // if we don't wait for the image to load before

 // using its pixels

 return new Promise((resolve, reject) => {

 const img = document.createElement("img");

 img.onerror = () => reject(

 new Error("Could not extract image data")

);

 img.onload = () => {

 try {

 const c =

 document.createElement("canvas");

 c.width = img.naturalWidth;

 c.height = img.naturalHeight;

 const context = c.getContext("2d");

 context.drawImage(img, 0, 0);

 const raw = context.getImageData(

 0, 0, c.width, c.height,

).data;

 // Filter out the alpha channel

 const r = raw.filter((_, i) => i%4 != 3);

 resolve(new Uint8Array(

 r.slice(1, r.length - 3 + r[0] + 1),

));

 } catch (e) { reject(e); }

 };

 img.src = `data:image/png;base64,${base64}`;

 });

}

1 Another example is base64-encoding arbitrary byte sequences. JavaScript has btoa and atob for converting strings to and from base64 encod
ing, but those functions fail for byte sequences that are not valid UTF-16 strings. In other words, they don’t work on all Uint8Arrays and, there
fore, cannot encode or decode truly arbitrary byte sequences.

2 Browsers have varying length limits, but it is ideal to keep URLs under a few thousand characters.

3 It’s also possible to port compression libraries to JavaScript or WASM. But browsers have good implementations; we might as well use them!

4 https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Compression

5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding

6 https://caniuse.com/mdn-api_compressionstream

7 https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API

https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Compression
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding
https://caniuse.com/mdn-api_compressionstream
https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API

	Using the Browser's <canvas> for Data Compression

